首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1697篇
  免费   90篇
  2023年   4篇
  2022年   4篇
  2021年   21篇
  2020年   19篇
  2019年   18篇
  2018年   37篇
  2017年   22篇
  2016年   45篇
  2015年   81篇
  2014年   75篇
  2013年   141篇
  2012年   123篇
  2011年   153篇
  2010年   79篇
  2009年   61篇
  2008年   131篇
  2007年   126篇
  2006年   124篇
  2005年   114篇
  2004年   99篇
  2003年   100篇
  2002年   65篇
  2001年   11篇
  2000年   11篇
  1999年   13篇
  1998年   15篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   9篇
  1992年   5篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   10篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有1787条查询结果,搜索用时 15 毫秒
61.
Complex formation between Cu(II) and three tetrazole analogues of opioid peptide-deltorphin I has been investigated. In potentiometric and spectroscopic (UV-Vis, CD and EPR) studies have been established the thermodynamic stability, speciation and structure of Cu(II) complexes with Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2 (L1), Tyr-Psi(CN4)-Gly-Phe-Asp-Val-Val-Gly-NH2 (L2), Tyr-Gly-Psi(CN4)-Phe-Asp-Val-Val-Gly-NH2 (L3) and Tyr-D-Ala-Psi(CN4)-Phe-Asp-Val-Val-Gly-NH2 (L4). The site of the insertion of tetrazole moiety Psi(CN4) into the peptide sequences has critical impact on their co-ordination ability. Comparison of the binding ability of the tetrazole analogues reveals that around physiological pH region the L3 and L4 are more effective ligands for copper(II) than L(1) and L(2). The peptide conformation changes achieved by Cu(II) co-ordination may be essential for binding of the tetrazole deltorphins at the opiate receptors.  相似文献   
62.
Patients with chronic renal failure (CRF) usually have a lower than healthy level of selenium (Se) in whole blood and plasma. Plasma glutathione peroxidase (GSH-Px) is synthesized mostly in the kidney. In CRF patients, activity of this enzyme is significantly reduced and its reduction increases with the progress of the disease. The aim of the study was to evaluate the effect of Se supplementation to CRF patients at various stages of the disease on Se concentration in blood components and on plasma GSH-Px activity. The study group comprised 53 CRF patients at various stages of the disease supplemented with Se (200 μg/d for 3 mo as Se-enriched yeast, containing about 70% l-selenomethionine [SeMet]). The control group consisted of 20 healthy subjects. The Se concentration in blood components was measured spectrofluorometrically with 2,3-diaminonaphthalene as a complexing reagent. GSH-Px activity in red cell hemolysates and plasma was assayed by the coupled method with tert-butyl hydroperoxide as a substrate. The Se concentration in whole blood and plasma of CRF patients is significantly lower as compared with healthy subjects, but similar at all stages of the disease. In the patients’ plasma, total protein and albumin levels are also significantly lower than in healthy subjects. Plasma GSH-Px activity in patients is extremely low, and contrary to Se concentration, it decreases linearly with the increasing stage of the illness. Se-supplied patients show an increased Se concentration in all blood components and at all disease stages, whereas plasma GSH-Px activity is enhanced only at the incipient stage of the disease. Se supply has no effect on plasma GSH-Px activity in uremic patients at the end stage of the disease. Total plasma protein and albumin levels did not change after Se supplementation. Our data seem to show that in patients with CRF lower total protein and albumin levels in plasma may be the chief cause of the low blood and plasma Se concentrations. GSH-Px activity decreases along with the kidney impairment. At the end stage of the disease, Se supplementation in the form of Se-enriched yeast has no effect on the increase in plasma GSH-Px activity.  相似文献   
63.
A new matrix-assisted laser desorption/ionization time of flight mass spectrometer (MALDI-ToF MS), developed specifically for the identification and characterization of proteins and peptides in proteomic investigations, is described. The mass spectrometer which can be integrated with the 2-D gel electrophoresis workflow is a bench-top instrument, enabling rapid, reliable and unattended protein identification in low-, as well as high-throughput proteomics applications. To obtain precise information on peptide sequences, the instrument utilizes a timed ion gate and a unique quadratic field reflectron (Z2 technology), allowing single-run, post-source decay (PSD) of selected peptides. In this study, the performance of the instrument in reflectron, PSD and linear mode, respectively, was investigated. The results showed that the limit of detection for a single peptide in reflectron mode was 125 amol with a signal to noise ratio exceeding 20. Average mass resolution for peptides larger than 2000 u was around 13,000 full width, half maximum (FWHM). The limit for protein identification during peptide mass fingerprinting (PMF) was 500 amol with a sequence coverage of 18%. Mass error during PMF analysis was less than 15 ppm for 17 out of 25 (68%) identified peptides. In PSD mode, a complete series of y-ions of a CAF-derivatized peptide could be obtained from 3.75 fmol of material. The average mass error of PSD-generated fragments was less than 0.14 u. Finally, in linear mode, intact proteins with molecular masses greater than 300,000 u were detected with mass errors below 0.2%.  相似文献   
64.
The infectious cycle of primate lentiviruses is intimately linked to interactions between cells of the immune system. Nef, a potent virulence factor, alters cellular environments to increase lentiviral replication in the host, yet the mechanisms underlying these effects have remained elusive. Since Nef likely functions as an adaptor protein, we exploited a proteomic approach to directly identify molecules that Nef targets to subvert the signaling machinery in T cells. We purified to near homogeneity a major Nef-associated protein complex from T cells and identified by mass spectroscopy its subunits as DOCK2–ELMO1, a key activator of Rac in antigen- and chemokine-initiated signaling pathways, and Rac. We show that Nef activates Rac in T cell lines and in primary T cells following infection with HIV-1 in the absence of antigenic stimuli. Nef activates Rac by binding the DOCK2–ELMO1 complex, and this interaction is linked to the abilities of Nef to inhibit chemotaxis and promote T cell activation. Our data indicate that Nef targets a critical switch that regulates Rac GTPases downstream of chemokine- and antigen-initiated signaling pathways. This interaction enables Nef to influence multiple aspects of T cell function and thus provides an important mechanism by which Nef impacts pathogenesis by primate lentiviruses.  相似文献   
65.
A model of phytoplankton dynamics introduced by Arino describes the evolution of aggregates of phytoplankton by a kinetic-type equation composed of terms describing the growth of the aggregates and their splitting, where the latter is modelled by a singular integral operator of the same form as in the classical fragmentation theory. In this paper we shall show that despite the presence of the growth term, the model displays the typical properties of the fragmentation models, in particular, if the fragmentation rate is unbounded as the size of aggregates tends to zero, then there occurs an unaccounted for loss of the phytoplankton though formally nothing is taken out of the system.  相似文献   
66.
Krol J  Krzyzosiak WJ 《IUBMB life》2004,56(2):95-100
One of the biggest surprises at the beginning of the 'post-genome era' was the discovery of numerous genes encoding microRNAs. They were found in genomes of such diverse organisms as Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens which implies their important role in multicellular life evolution. The number of microRNA genes is estimated to be nearly 1% of that of protein-coding genes. Their products, tiny RNAs, are thought to regulate gene expression during development, organogenesis, and very likely during many other processes, by hybridizing to their target mRNAs. The cellular functions of mRNAs that are regulated by microRNAs are only beginning to be revealed, and details of this regulation mechanism are still poorly understood. In this article we discuss the possible mechanisms of microRNA biogenesis with special emphasis on their structural aspects. We have focused on the factors and effects that may be responsible for the existing length differences between different microRNAs, and for the observed length heterogeneity within some individual microRNA species.  相似文献   
67.
The catalase-peroxidase encoded by katG of Burkholderia pseudomallei (BpKatG) is 65% identical with KatG of Mycobacterium tuberculosis, the enzyme responsible for the activation of isoniazid as an antibiotic. The structure of a complex of BpKatG with an unidentified ligand, has been solved and refined at 1.7A resolution using X-ray synchrotron data collected from crystals flash-cooled with liquid nitrogen. The crystallographic agreement factors R and R(free) are 15.3% and 18.6%, respectively. The crystallized enzyme is a dimer with one modified heme group and one metal ion, likely sodium, per subunit. The modification on the heme group involves the covalent addition of two or three atoms, likely a perhydroxy group, to the secondary carbon atom of the vinyl group on ring I. The added group can form hydrogen bonds with two water molecules that are also in contact with the active-site residues Trp111 and His112, suggesting that the modification may have a catalytic role. The heme modification is in close proximity to an unusual covalent adduct among the side-chains of Trp111, Tyr238 and Met264. In addition, Trp111 appears to be oxidized on C(delta1) of the indole ring. The main channel, providing access of substrate hydrogen peroxide to the heme, contains a region of unassigned electron density consistent with the binding of a pyridine nucleotide-like molecule. An interior cavity, containing the sodium ion and an additional region of unassigned density, is evident adjacent to the adduct and is accessible to the outside through a second funnel-shaped channel. A large cleft in the side of the subunit is evident and may be a potential substrate-binding site with a clear pathway for electron transfer to the active-site heme group through the adduct.  相似文献   
68.
PDZ domains are ubiquitous protein interaction modules that play a key role in cellular signaling. Their binding specificity involves recognition of the carboxyl-terminus of various proteins, often belonging to receptor and ion channel families. PDZ domains also mediate more complicated molecular networks through PDZ-PDZ interactions, recognition of internal protein sequences or phosphatidylinositol moieties. The domains often form a tandem of multiple copies, but equally often such tandems or single PDZ domain occur in combination with other signaling domains (for example SH3, DH/PH, GUK, LIM, CaMK). Common occurrence of PDZ domains in Metazoans strongly suggests that their evolutionary appearance results from the complication of signaling mechanisms in multicellular organisms. Here, we focus on their structure, specificity and role in signaling pathways.  相似文献   
69.
Two sequenced nodulation regions of lupin Bradyrhizobium sp. WM9 carried the majority of genes involved in the Nod factor production. The nod region I harbored: nolA, nodD, nodA, nodB, nodC, nodS, nodI, nodJ, nolO, nodZ, fixR, nifA, fixA, nodM, nolK and noeL. This gene arrangement resembled that found in the nodulation region of Bradyrhizobium japonicum USDA110, however strain WM9 harbored only one nodD gene copy, while the nodM, nolK and noeL genes had no counterparts in the 410 kb symbiotic region of strain USDA110. Region II harbored nolL and nodW, but lacked an nodV gene. Both regions carried ORFs that lacked similarity to the published USDA110 sequences, though they had homologues in symbiotic regions of Rhizobium etli, Sinorhizobium sp. NGR234 and Mesorhizobium loti. These differences in gene content, as well as a low average sequence identity (70%) of symbiotic genes with respect to B. japonicum USDA110 were in contrast with the phylogenetic relationship of USDA110 and WM9 revealed by the analysis of 16S rDNA and dnaK sequences. This most likely reflected an early divergence of symbiotic loci, and possible co-speciation with distinct legumes. During this process the loss of a noeI gene and the acquisition of a nolL gene could be regarded as an adaptation towards these legumes that responded to Nod factors carrying 4-O-acetylfucose rather than 2-O-methylfucose. This explained various responses of lupins and serradella plants to infection by mutants in nodZ and nolL genes, knowing that serradella is a stringent legume while lupins are more promiscuous legumes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号